Code for training is the same as Notebook 05.
from car_speech.fname_processing import load_fnames
from car_speech.pipeline import *
import string
from random import shuffle
from copy import deepcopy
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import tensorflow as tf
from tensorflow.keras.layers.experimental import preprocessing
from tensorflow.keras import layers
from tensorflow.keras import models
from sklearn.model_selection import train_test_split, KFold
DATASET_TYPE = 'digits' # 'digits' or 'letters' or 'mixed'
LEVEL_NAME = 'IDL' # 'IDL' or '35U' or '35D' or '55U' or '55D'
EPOCHS = 100
if DATASET_TYPE == 'digits':
label_strings = np.array([str(num) for num in range(0,10)])
fname_str = 'digit'
elif DATASET_TYPE == 'letters':
label_strings = np.array(list(string.ascii_uppercase))
fname_str = 'letter'
elif DATASET_TYPE == 'mixed':
label_strings = np.array([str(num) for num in range(0,10)] + list(string.ascii_uppercase))
fname_str = 'mixed'
# load classified filenames
filenames = load_fnames('noise_levels/' + fname_str + '_noise_levels/' + LEVEL_NAME + '.data')
num_samples = len(filenames)
print('number of files:', len(filenames))
# shuffle
shuffle(filenames)
fold_no = 1
acc_per_fold = []
number of files: 2677
beg_ratio = 0
while beg_ratio < 0.9:
test_beg = int(beg_ratio*num_samples)
test_end = int((beg_ratio+0.1)*num_samples)
fnames_copy = deepcopy(filenames)
test_files = fnames_copy[test_beg:test_end]
del fnames_copy[test_beg:test_end]
val_len = len(test_files)
val_files = fnames_copy[-val_len:]
del fnames_copy[-val_len:]
train_files = fnames_copy
beg_ratio += 0.1
train_files = shuffle_data(train_files)
val_files = shuffle_data(val_files)
test_files = shuffle_data(test_files)
# Process data using the combined pipeline
spectrogram_ds = preprocess_dataset(train_files, DATASET_TYPE)
train_ds = spectrogram_ds
val_ds = preprocess_dataset(val_files, DATASET_TYPE)
test_ds = preprocess_dataset(test_files, DATASET_TYPE)
print("Pipeline Completed")
# batch
batch_size = 64
train_ds = train_ds.batch(batch_size)
val_ds = val_ds.batch(batch_size)
AUTOTUNE = tf.data.experimental.AUTOTUNE
train_ds = train_ds.cache().prefetch(AUTOTUNE)
val_ds = val_ds.cache().prefetch(AUTOTUNE)
# model
for spectrogram, _ in spectrogram_ds.take(1):
input_shape = spectrogram.shape
# print('Input shape:', input_shape)
num_labels = len(label_strings)
norm_layer = preprocessing.Normalization()
norm_layer.adapt(spectrogram_ds.map(lambda x, _: x))
# model = models.Sequential([
# layers.Input(shape=input_shape),
# preprocessing.Resizing(32, 32),
# norm_layer,
# layers.Conv2D(32, 3, activation='relu'),
# layers.Conv2D(64, 3, activation='relu'),
# layers.MaxPooling2D(),
# layers.Dropout(0.25),
# layers.Flatten(),
# layers.Dense(128, activation='relu'),
# layers.Dropout(0.5),
# layers.Dense(num_labels),
# ])
model = models.Sequential([
layers.Input(shape=input_shape),
preprocessing.Resizing(32, 32),
norm_layer,
layers.Conv2D(128, 3, activation='relu'),
layers.MaxPooling2D(),
layers.Dropout(0.25),
layers.Conv2D(128, 3, activation='relu'),
layers.MaxPooling2D(),
layers.Dropout(0.25),
layers.Conv2D(128, 3, activation='relu'),
layers.MaxPooling2D(),
layers.Dropout(0.25),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dropout(0.5),
layers.Dense(num_labels),
])
model.compile(
optimizer=tf.keras.optimizers.Adam(),
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'],
)
# Train
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=EPOCHS,
callbacks=tf.keras.callbacks.EarlyStopping(verbose=1, patience=3),
)
# Test
test_audio = []
test_labels = []
for audio, label in test_ds:
test_audio.append(audio.numpy())
test_labels.append(label.numpy())
test_audio = np.array(test_audio)
test_labels = np.array(test_labels)
y_pred = np.argmax(model.predict(test_audio), axis=1)
y_true = test_labels
test_acc = sum(y_pred == y_true) / len(y_true)
print(f'Fold {fold_no} - Test set accuracy: {test_acc:.0%}')
acc_per_fold.append(round(test_acc, 2))
fold_no += 1
print(acc_per_fold)
print('mean score:', round(np.mean(acc_per_fold), 2))
Pipeline Completed Epoch 1/100 34/34 [==============================] - 6s 174ms/step - loss: 3.2555 - accuracy: 0.0532 - val_loss: 3.2160 - val_accuracy: 0.0487 Epoch 2/100 34/34 [==============================] - 4s 132ms/step - loss: 3.1845 - accuracy: 0.0700 - val_loss: 3.0995 - val_accuracy: 0.0787 Epoch 3/100 34/34 [==============================] - 4s 125ms/step - loss: 3.0935 - accuracy: 0.0849 - val_loss: 3.0073 - val_accuracy: 0.0974 Epoch 4/100 34/34 [==============================] - 4s 126ms/step - loss: 3.0126 - accuracy: 0.0980 - val_loss: 2.9042 - val_accuracy: 0.1199 Epoch 5/100 34/34 [==============================] - 4s 118ms/step - loss: 2.9480 - accuracy: 0.1134 - val_loss: 2.7988 - val_accuracy: 0.1386 Epoch 6/100 34/34 [==============================] - 5s 134ms/step - loss: 2.8675 - accuracy: 0.1321 - val_loss: 2.7338 - val_accuracy: 0.1536 Epoch 7/100 34/34 [==============================] - 5s 139ms/step - loss: 2.7600 - accuracy: 0.1475 - val_loss: 2.6301 - val_accuracy: 0.1723 Epoch 8/100 34/34 [==============================] - 4s 132ms/step - loss: 2.6644 - accuracy: 0.1727 - val_loss: 2.5235 - val_accuracy: 0.1835 Epoch 9/100 34/34 [==============================] - 5s 155ms/step - loss: 2.5892 - accuracy: 0.1913 - val_loss: 2.4457 - val_accuracy: 0.2547 Epoch 10/100 34/34 [==============================] - 5s 135ms/step - loss: 2.4967 - accuracy: 0.2142 - val_loss: 2.3813 - val_accuracy: 0.2434 Epoch 11/100 34/34 [==============================] - 5s 133ms/step - loss: 2.3975 - accuracy: 0.2408 - val_loss: 2.2852 - val_accuracy: 0.2547 Epoch 12/100 34/34 [==============================] - 4s 126ms/step - loss: 2.3294 - accuracy: 0.2552 - val_loss: 2.2137 - val_accuracy: 0.2959 Epoch 13/100 34/34 [==============================] - 4s 126ms/step - loss: 2.2316 - accuracy: 0.2800 - val_loss: 2.1292 - val_accuracy: 0.3371 Epoch 14/100 34/34 [==============================] - 4s 129ms/step - loss: 2.1795 - accuracy: 0.3056 - val_loss: 2.0842 - val_accuracy: 0.3521 Epoch 15/100 34/34 [==============================] - 6s 167ms/step - loss: 2.1368 - accuracy: 0.2907 - val_loss: 2.0203 - val_accuracy: 0.3296 Epoch 16/100 34/34 [==============================] - 5s 154ms/step - loss: 2.0308 - accuracy: 0.3308 - val_loss: 1.9655 - val_accuracy: 0.3745 Epoch 17/100 34/34 [==============================] - 5s 140ms/step - loss: 1.9703 - accuracy: 0.3537 - val_loss: 1.9107 - val_accuracy: 0.3596 Epoch 18/100 34/34 [==============================] - 5s 133ms/step - loss: 1.9355 - accuracy: 0.3621 - val_loss: 1.8525 - val_accuracy: 0.3933 Epoch 19/100 34/34 [==============================] - 4s 131ms/step - loss: 1.8588 - accuracy: 0.3682 - val_loss: 1.8453 - val_accuracy: 0.3670 Epoch 20/100 34/34 [==============================] - 4s 130ms/step - loss: 1.8340 - accuracy: 0.3803 - val_loss: 1.8238 - val_accuracy: 0.4232 Epoch 21/100 34/34 [==============================] - 5s 135ms/step - loss: 1.7585 - accuracy: 0.4106 - val_loss: 1.7902 - val_accuracy: 0.3970 Epoch 22/100 34/34 [==============================] - 5s 159ms/step - loss: 1.7125 - accuracy: 0.4195 - val_loss: 1.7775 - val_accuracy: 0.3745 Epoch 23/100 34/34 [==============================] - 4s 123ms/step - loss: 1.6946 - accuracy: 0.4172 - val_loss: 1.7812 - val_accuracy: 0.3858 Epoch 24/100 34/34 [==============================] - 4s 121ms/step - loss: 1.6298 - accuracy: 0.4615 - val_loss: 1.7240 - val_accuracy: 0.4270 Epoch 25/100 34/34 [==============================] - 4s 126ms/step - loss: 1.6198 - accuracy: 0.4400 - val_loss: 1.7368 - val_accuracy: 0.4457 Epoch 26/100 34/34 [==============================] - 4s 125ms/step - loss: 1.5914 - accuracy: 0.4503 - val_loss: 1.7227 - val_accuracy: 0.4345 Epoch 27/100 34/34 [==============================] - 4s 125ms/step - loss: 1.5609 - accuracy: 0.4666 - val_loss: 1.6887 - val_accuracy: 0.4270 Epoch 28/100 34/34 [==============================] - 4s 125ms/step - loss: 1.5584 - accuracy: 0.4666 - val_loss: 1.7066 - val_accuracy: 0.3970 Epoch 29/100 34/34 [==============================] - 5s 138ms/step - loss: 1.4817 - accuracy: 0.4830 - val_loss: 1.6624 - val_accuracy: 0.4382 Epoch 30/100 34/34 [==============================] - 5s 150ms/step - loss: 1.4239 - accuracy: 0.5114 - val_loss: 1.6534 - val_accuracy: 0.4232 Epoch 31/100 34/34 [==============================] - 5s 148ms/step - loss: 1.4353 - accuracy: 0.5058 - val_loss: 1.6566 - val_accuracy: 0.4270 Epoch 32/100 34/34 [==============================] - 4s 130ms/step - loss: 1.4179 - accuracy: 0.5147 - val_loss: 1.6464 - val_accuracy: 0.4419 Epoch 33/100 34/34 [==============================] - 4s 130ms/step - loss: 1.3836 - accuracy: 0.5245 - val_loss: 1.6141 - val_accuracy: 0.4494 Epoch 34/100 34/34 [==============================] - 4s 131ms/step - loss: 1.3350 - accuracy: 0.5296 - val_loss: 1.5975 - val_accuracy: 0.4419 Epoch 35/100 34/34 [==============================] - 4s 132ms/step - loss: 1.3630 - accuracy: 0.5226 - val_loss: 1.6118 - val_accuracy: 0.4494 Epoch 36/100 34/34 [==============================] - 5s 160ms/step - loss: 1.3185 - accuracy: 0.5362 - val_loss: 1.6292 - val_accuracy: 0.4494 Epoch 37/100 34/34 [==============================] - 5s 144ms/step - loss: 1.3006 - accuracy: 0.5474 - val_loss: 1.6150 - val_accuracy: 0.4345 Epoch 00037: early stopping Fold 1 - Test set accuracy: 48% Pipeline Completed Epoch 1/100 34/34 [==============================] - 5s 157ms/step - loss: 3.2635 - accuracy: 0.0369 - val_loss: 3.2337 - val_accuracy: 0.0448 Epoch 2/100 34/34 [==============================] - 4s 115ms/step - loss: 3.1923 - accuracy: 0.0570 - val_loss: 3.0986 - val_accuracy: 0.0672 Epoch 3/100 34/34 [==============================] - 4s 125ms/step - loss: 3.0993 - accuracy: 0.0887 - val_loss: 2.9721 - val_accuracy: 0.0970 Epoch 4/100 34/34 [==============================] - 4s 125ms/step - loss: 2.9987 - accuracy: 0.0986 - val_loss: 2.8529 - val_accuracy: 0.1343 Epoch 5/100 34/34 [==============================] - 4s 130ms/step - loss: 2.9297 - accuracy: 0.1191 - val_loss: 2.7741 - val_accuracy: 0.1269 Epoch 6/100 34/34 [==============================] - 4s 131ms/step - loss: 2.8765 - accuracy: 0.1177 - val_loss: 2.7424 - val_accuracy: 0.1791 Epoch 7/100 34/34 [==============================] - 4s 127ms/step - loss: 2.7730 - accuracy: 0.1513 - val_loss: 2.6010 - val_accuracy: 0.1940 Epoch 8/100 34/34 [==============================] - 4s 131ms/step - loss: 2.6788 - accuracy: 0.1803 - val_loss: 2.5227 - val_accuracy: 0.1903 Epoch 9/100 34/34 [==============================] - 5s 135ms/step - loss: 2.5999 - accuracy: 0.1798 - val_loss: 2.5184 - val_accuracy: 0.2127 Epoch 10/100 34/34 [==============================] - 4s 126ms/step - loss: 2.5485 - accuracy: 0.2041 - val_loss: 2.4522 - val_accuracy: 0.2127 Epoch 11/100 34/34 [==============================] - 4s 125ms/step - loss: 2.4187 - accuracy: 0.2261 - val_loss: 2.4272 - val_accuracy: 0.2276 Epoch 12/100 34/34 [==============================] - 4s 131ms/step - loss: 2.3546 - accuracy: 0.2368 - val_loss: 2.2693 - val_accuracy: 0.2463 Epoch 13/100 34/34 [==============================] - 4s 126ms/step - loss: 2.2897 - accuracy: 0.2527 - val_loss: 2.2471 - val_accuracy: 0.2687 Epoch 14/100 34/34 [==============================] - 4s 125ms/step - loss: 2.2315 - accuracy: 0.2723 - val_loss: 2.1794 - val_accuracy: 0.2836 Epoch 15/100 34/34 [==============================] - 4s 128ms/step - loss: 2.1485 - accuracy: 0.3134 - val_loss: 2.1600 - val_accuracy: 0.3097 Epoch 16/100 34/34 [==============================] - 4s 130ms/step - loss: 2.0998 - accuracy: 0.3083 - val_loss: 2.0515 - val_accuracy: 0.3396 Epoch 17/100 34/34 [==============================] - 5s 138ms/step - loss: 2.0497 - accuracy: 0.3185 - val_loss: 2.0302 - val_accuracy: 0.2985 Epoch 18/100 34/34 [==============================] - 4s 125ms/step - loss: 2.0057 - accuracy: 0.3302 - val_loss: 1.9602 - val_accuracy: 0.3358 Epoch 19/100 34/34 [==============================] - 4s 126ms/step - loss: 1.9468 - accuracy: 0.3456 - val_loss: 1.9266 - val_accuracy: 0.3470 Epoch 20/100 34/34 [==============================] - 4s 128ms/step - loss: 1.8912 - accuracy: 0.3699 - val_loss: 1.9168 - val_accuracy: 0.3470 Epoch 21/100 34/34 [==============================] - 4s 126ms/step - loss: 1.8710 - accuracy: 0.3741 - val_loss: 1.8806 - val_accuracy: 0.3694 Epoch 22/100 34/34 [==============================] - 4s 126ms/step - loss: 1.7884 - accuracy: 0.3914 - val_loss: 1.8565 - val_accuracy: 0.3731 Epoch 23/100 34/34 [==============================] - 5s 133ms/step - loss: 1.7474 - accuracy: 0.4101 - val_loss: 1.7856 - val_accuracy: 0.3769 Epoch 24/100 34/34 [==============================] - 4s 126ms/step - loss: 1.7314 - accuracy: 0.4208 - val_loss: 1.8156 - val_accuracy: 0.3881 Epoch 25/100 34/34 [==============================] - 4s 118ms/step - loss: 1.7158 - accuracy: 0.4138 - val_loss: 1.7560 - val_accuracy: 0.4142 Epoch 26/100 34/34 [==============================] - 5s 135ms/step - loss: 1.6849 - accuracy: 0.4162 - val_loss: 1.7770 - val_accuracy: 0.4030 Epoch 27/100 34/34 [==============================] - 4s 126ms/step - loss: 1.6436 - accuracy: 0.4180 - val_loss: 1.7245 - val_accuracy: 0.3918 Epoch 28/100 34/34 [==============================] - 4s 125ms/step - loss: 1.6135 - accuracy: 0.4549 - val_loss: 1.7407 - val_accuracy: 0.4030 Epoch 29/100 34/34 [==============================] - 4s 123ms/step - loss: 1.5815 - accuracy: 0.4507 - val_loss: 1.6988 - val_accuracy: 0.4142 Epoch 30/100 34/34 [==============================] - 4s 125ms/step - loss: 1.5816 - accuracy: 0.4465 - val_loss: 1.7169 - val_accuracy: 0.3843 Epoch 31/100 34/34 [==============================] - 4s 123ms/step - loss: 1.5648 - accuracy: 0.4437 - val_loss: 1.7093 - val_accuracy: 0.4142 Epoch 32/100 34/34 [==============================] - 4s 127ms/step - loss: 1.4998 - accuracy: 0.4787 - val_loss: 1.6692 - val_accuracy: 0.4254 Epoch 33/100 34/34 [==============================] - 4s 125ms/step - loss: 1.4824 - accuracy: 0.4876 - val_loss: 1.6742 - val_accuracy: 0.4142 Epoch 34/100 34/34 [==============================] - 4s 132ms/step - loss: 1.4755 - accuracy: 0.4750 - val_loss: 1.6568 - val_accuracy: 0.4440 Epoch 35/100 34/34 [==============================] - 4s 123ms/step - loss: 1.4196 - accuracy: 0.4881 - val_loss: 1.6952 - val_accuracy: 0.4701 Epoch 36/100 34/34 [==============================] - 4s 125ms/step - loss: 1.3980 - accuracy: 0.5082 - val_loss: 1.6949 - val_accuracy: 0.4478 Epoch 37/100 34/34 [==============================] - 4s 127ms/step - loss: 1.4384 - accuracy: 0.4867 - val_loss: 1.6595 - val_accuracy: 0.4403 Epoch 00037: early stopping Fold 2 - Test set accuracy: 43% Pipeline Completed Epoch 1/100 34/34 [==============================] - 5s 160ms/step - loss: 3.2602 - accuracy: 0.0518 - val_loss: 3.2360 - val_accuracy: 0.0634 Epoch 2/100 34/34 [==============================] - 4s 124ms/step - loss: 3.2107 - accuracy: 0.0556 - val_loss: 3.1230 - val_accuracy: 0.0560 Epoch 3/100 34/34 [==============================] - 4s 126ms/step - loss: 3.1349 - accuracy: 0.0757 - val_loss: 3.0136 - val_accuracy: 0.0784 Epoch 4/100 34/34 [==============================] - 4s 127ms/step - loss: 3.0454 - accuracy: 0.0953 - val_loss: 2.8814 - val_accuracy: 0.1045 Epoch 5/100 34/34 [==============================] - 5s 139ms/step - loss: 2.9808 - accuracy: 0.1037 - val_loss: 2.8276 - val_accuracy: 0.1866 Epoch 6/100 34/34 [==============================] - 4s 127ms/step - loss: 2.8531 - accuracy: 0.1284 - val_loss: 2.7055 - val_accuracy: 0.2052 Epoch 7/100 34/34 [==============================] - 4s 127ms/step - loss: 2.7482 - accuracy: 0.1663 - val_loss: 2.5776 - val_accuracy: 0.2463 Epoch 8/100 34/34 [==============================] - 4s 125ms/step - loss: 2.6147 - accuracy: 0.1831 - val_loss: 2.4634 - val_accuracy: 0.2276 Epoch 9/100 34/34 [==============================] - 4s 114ms/step - loss: 2.5217 - accuracy: 0.2032 - val_loss: 2.3525 - val_accuracy: 0.2612 Epoch 10/100 34/34 [==============================] - 4s 114ms/step - loss: 2.4450 - accuracy: 0.2298 - val_loss: 2.2939 - val_accuracy: 0.2836 Epoch 11/100 34/34 [==============================] - 4s 115ms/step - loss: 2.3561 - accuracy: 0.2541 - val_loss: 2.2336 - val_accuracy: 0.2761 Epoch 12/100 34/34 [==============================] - 4s 123ms/step - loss: 2.2535 - accuracy: 0.2774 - val_loss: 2.1523 - val_accuracy: 0.2985 Epoch 13/100 34/34 [==============================] - 4s 125ms/step - loss: 2.1990 - accuracy: 0.2947 - val_loss: 2.0940 - val_accuracy: 0.2948 Epoch 14/100 34/34 [==============================] - 4s 127ms/step - loss: 2.1403 - accuracy: 0.2957 - val_loss: 2.0573 - val_accuracy: 0.2873 Epoch 15/100 34/34 [==============================] - 4s 128ms/step - loss: 2.0688 - accuracy: 0.3139 - val_loss: 1.9646 - val_accuracy: 0.3396 Epoch 16/100 34/34 [==============================] - 4s 125ms/step - loss: 2.0224 - accuracy: 0.3298 - val_loss: 1.9983 - val_accuracy: 0.3619 Epoch 17/100 34/34 [==============================] - 4s 126ms/step - loss: 1.9678 - accuracy: 0.3461 - val_loss: 1.9237 - val_accuracy: 0.3545 Epoch 18/100 34/34 [==============================] - 4s 126ms/step - loss: 1.8881 - accuracy: 0.3723 - val_loss: 1.9198 - val_accuracy: 0.3470 Epoch 19/100 34/34 [==============================] - 4s 127ms/step - loss: 1.8558 - accuracy: 0.3807 - val_loss: 1.8770 - val_accuracy: 0.4030 Epoch 20/100 34/34 [==============================] - 4s 127ms/step - loss: 1.7999 - accuracy: 0.4026 - val_loss: 1.7978 - val_accuracy: 0.3843 Epoch 21/100 34/34 [==============================] - 4s 127ms/step - loss: 1.7794 - accuracy: 0.3984 - val_loss: 1.8096 - val_accuracy: 0.4067 Epoch 22/100 34/34 [==============================] - 4s 119ms/step - loss: 1.7063 - accuracy: 0.4274 - val_loss: 1.7703 - val_accuracy: 0.3806 Epoch 23/100 34/34 [==============================] - 4s 125ms/step - loss: 1.6987 - accuracy: 0.4143 - val_loss: 1.7525 - val_accuracy: 0.3806 Epoch 24/100 34/34 [==============================] - 4s 124ms/step - loss: 1.6355 - accuracy: 0.4418 - val_loss: 1.8045 - val_accuracy: 0.3806 Epoch 25/100 34/34 [==============================] - 4s 126ms/step - loss: 1.6391 - accuracy: 0.4404 - val_loss: 1.7394 - val_accuracy: 0.3955 Epoch 26/100 34/34 [==============================] - 4s 126ms/step - loss: 1.6115 - accuracy: 0.4526 - val_loss: 1.7107 - val_accuracy: 0.4030 Epoch 27/100 34/34 [==============================] - 4s 126ms/step - loss: 1.5514 - accuracy: 0.4657 - val_loss: 1.6656 - val_accuracy: 0.4030 Epoch 28/100 34/34 [==============================] - 4s 126ms/step - loss: 1.5168 - accuracy: 0.4769 - val_loss: 1.7033 - val_accuracy: 0.3769 Epoch 29/100 34/34 [==============================] - 4s 125ms/step - loss: 1.4997 - accuracy: 0.4909 - val_loss: 1.7227 - val_accuracy: 0.3955 Epoch 30/100 34/34 [==============================] - 4s 128ms/step - loss: 1.5125 - accuracy: 0.4839 - val_loss: 1.6730 - val_accuracy: 0.4328 Epoch 00030: early stopping Fold 3 - Test set accuracy: 40% Pipeline Completed Epoch 1/100 34/34 [==============================] - 5s 160ms/step - loss: 3.2662 - accuracy: 0.0401 - val_loss: 3.2353 - val_accuracy: 0.0449 Epoch 2/100 34/34 [==============================] - 4s 130ms/step - loss: 3.2135 - accuracy: 0.0574 - val_loss: 3.1285 - val_accuracy: 0.0936 Epoch 3/100 34/34 [==============================] - 5s 133ms/step - loss: 3.1213 - accuracy: 0.0845 - val_loss: 3.0166 - val_accuracy: 0.1199 Epoch 4/100 34/34 [==============================] - 4s 130ms/step - loss: 3.0284 - accuracy: 0.0915 - val_loss: 2.9143 - val_accuracy: 0.1049 Epoch 5/100 34/34 [==============================] - 4s 125ms/step - loss: 2.9587 - accuracy: 0.1008 - val_loss: 2.8404 - val_accuracy: 0.1161 Epoch 6/100 34/34 [==============================] - 4s 129ms/step - loss: 2.8539 - accuracy: 0.1311 - val_loss: 2.7454 - val_accuracy: 0.1536 Epoch 7/100 34/34 [==============================] - 4s 129ms/step - loss: 2.7706 - accuracy: 0.1517 - val_loss: 2.6426 - val_accuracy: 0.1873 Epoch 8/100 34/34 [==============================] - 4s 127ms/step - loss: 2.6930 - accuracy: 0.1671 - val_loss: 2.5384 - val_accuracy: 0.1948 Epoch 9/100 34/34 [==============================] - 4s 132ms/step - loss: 2.6035 - accuracy: 0.1825 - val_loss: 2.4528 - val_accuracy: 0.2584 Epoch 10/100 34/34 [==============================] - 4s 127ms/step - loss: 2.5125 - accuracy: 0.2133 - val_loss: 2.3889 - val_accuracy: 0.2659 Epoch 11/100 34/34 [==============================] - 4s 126ms/step - loss: 2.4191 - accuracy: 0.2287 - val_loss: 2.3631 - val_accuracy: 0.2247 Epoch 12/100 34/34 [==============================] - 4s 125ms/step - loss: 2.3511 - accuracy: 0.2515 - val_loss: 2.3111 - val_accuracy: 0.2584 Epoch 13/100 34/34 [==============================] - 4s 125ms/step - loss: 2.2848 - accuracy: 0.2613 - val_loss: 2.1911 - val_accuracy: 0.2959 Epoch 14/100 34/34 [==============================] - 4s 125ms/step - loss: 2.2069 - accuracy: 0.2912 - val_loss: 2.1609 - val_accuracy: 0.3146 Epoch 15/100 34/34 [==============================] - 4s 126ms/step - loss: 2.1582 - accuracy: 0.2944 - val_loss: 2.1292 - val_accuracy: 0.3184 Epoch 16/100 34/34 [==============================] - 4s 132ms/step - loss: 2.0908 - accuracy: 0.3182 - val_loss: 2.0662 - val_accuracy: 0.3296 Epoch 17/100 34/34 [==============================] - 4s 130ms/step - loss: 2.0343 - accuracy: 0.3271 - val_loss: 2.0863 - val_accuracy: 0.3296 Epoch 18/100 34/34 [==============================] - 4s 126ms/step - loss: 1.9439 - accuracy: 0.3500 - val_loss: 1.9550 - val_accuracy: 0.3670 Epoch 19/100 34/34 [==============================] - 4s 128ms/step - loss: 1.9150 - accuracy: 0.3560 - val_loss: 1.9505 - val_accuracy: 0.3895 Epoch 20/100 34/34 [==============================] - 5s 135ms/step - loss: 1.8709 - accuracy: 0.3724 - val_loss: 1.8893 - val_accuracy: 0.3933 Epoch 21/100 34/34 [==============================] - 4s 132ms/step - loss: 1.8423 - accuracy: 0.3677 - val_loss: 1.8688 - val_accuracy: 0.4007 Epoch 22/100 34/34 [==============================] - 5s 135ms/step - loss: 1.7817 - accuracy: 0.4130 - val_loss: 1.8334 - val_accuracy: 0.4270 Epoch 23/100 34/34 [==============================] - 4s 131ms/step - loss: 1.7333 - accuracy: 0.4167 - val_loss: 1.8058 - val_accuracy: 0.4045 Epoch 24/100 34/34 [==============================] - 4s 130ms/step - loss: 1.7135 - accuracy: 0.4106 - val_loss: 1.7826 - val_accuracy: 0.4045 Epoch 25/100 34/34 [==============================] - 4s 130ms/step - loss: 1.6346 - accuracy: 0.4466 - val_loss: 1.7971 - val_accuracy: 0.3745 Epoch 26/100 34/34 [==============================] - 4s 126ms/step - loss: 1.6292 - accuracy: 0.4372 - val_loss: 1.7454 - val_accuracy: 0.4195 Epoch 27/100 34/34 [==============================] - 4s 125ms/step - loss: 1.5902 - accuracy: 0.4428 - val_loss: 1.7327 - val_accuracy: 0.4270 Epoch 28/100 34/34 [==============================] - 4s 125ms/step - loss: 1.5658 - accuracy: 0.4727 - val_loss: 1.7117 - val_accuracy: 0.4607 Epoch 29/100 34/34 [==============================] - 4s 128ms/step - loss: 1.5208 - accuracy: 0.4764 - val_loss: 1.7288 - val_accuracy: 0.4382 Epoch 30/100 34/34 [==============================] - 5s 133ms/step - loss: 1.5091 - accuracy: 0.4778 - val_loss: 1.7516 - val_accuracy: 0.4120 Epoch 31/100 34/34 [==============================] - 4s 123ms/step - loss: 1.5125 - accuracy: 0.4858 - val_loss: 1.6692 - val_accuracy: 0.4382 Epoch 32/100 34/34 [==============================] - 4s 114ms/step - loss: 1.4878 - accuracy: 0.4760 - val_loss: 1.7314 - val_accuracy: 0.4270 Epoch 33/100 34/34 [==============================] - 4s 115ms/step - loss: 1.4443 - accuracy: 0.5082 - val_loss: 1.6318 - val_accuracy: 0.4644 Epoch 34/100 34/34 [==============================] - 4s 115ms/step - loss: 1.4147 - accuracy: 0.5026 - val_loss: 1.6183 - val_accuracy: 0.4457 Epoch 35/100 34/34 [==============================] - 4s 125ms/step - loss: 1.4106 - accuracy: 0.5091 - val_loss: 1.6358 - val_accuracy: 0.4232 Epoch 36/100 34/34 [==============================] - 4s 126ms/step - loss: 1.3746 - accuracy: 0.5175 - val_loss: 1.6135 - val_accuracy: 0.4419 Epoch 37/100 34/34 [==============================] - 4s 127ms/step - loss: 1.3662 - accuracy: 0.5156 - val_loss: 1.5874 - val_accuracy: 0.4719 Epoch 38/100 34/34 [==============================] - 4s 126ms/step - loss: 1.3179 - accuracy: 0.5404 - val_loss: 1.6342 - val_accuracy: 0.4120 Epoch 39/100 34/34 [==============================] - 4s 125ms/step - loss: 1.2955 - accuracy: 0.5488 - val_loss: 1.5764 - val_accuracy: 0.4494 Epoch 40/100 34/34 [==============================] - 4s 126ms/step - loss: 1.2794 - accuracy: 0.5380 - val_loss: 1.6133 - val_accuracy: 0.4457 Epoch 41/100 34/34 [==============================] - 4s 125ms/step - loss: 1.2385 - accuracy: 0.5791 - val_loss: 1.5526 - val_accuracy: 0.4757 Epoch 42/100 34/34 [==============================] - 4s 131ms/step - loss: 1.2340 - accuracy: 0.5842 - val_loss: 1.6459 - val_accuracy: 0.4120 Epoch 43/100 34/34 [==============================] - 5s 135ms/step - loss: 1.2253 - accuracy: 0.5623 - val_loss: 1.5847 - val_accuracy: 0.4307 Epoch 44/100 34/34 [==============================] - 4s 130ms/step - loss: 1.2301 - accuracy: 0.5702 - val_loss: 1.5877 - val_accuracy: 0.4719 Epoch 00044: early stopping Fold 4 - Test set accuracy: 43% Pipeline Completed Epoch 1/100 34/34 [==============================] - 5s 158ms/step - loss: 3.2667 - accuracy: 0.0416 - val_loss: 3.2491 - val_accuracy: 0.0448 Epoch 2/100 34/34 [==============================] - 4s 128ms/step - loss: 3.2231 - accuracy: 0.0589 - val_loss: 3.1538 - val_accuracy: 0.0709 Epoch 3/100 34/34 [==============================] - 4s 126ms/step - loss: 3.1415 - accuracy: 0.0827 - val_loss: 3.0459 - val_accuracy: 0.1157 Epoch 4/100 34/34 [==============================] - 4s 132ms/step - loss: 3.0660 - accuracy: 0.0929 - val_loss: 2.9447 - val_accuracy: 0.1007 Epoch 5/100 34/34 [==============================] - 4s 126ms/step - loss: 2.9917 - accuracy: 0.1210 - val_loss: 2.8372 - val_accuracy: 0.1530 Epoch 6/100 34/34 [==============================] - 4s 129ms/step - loss: 2.8907 - accuracy: 0.1340 - val_loss: 2.7248 - val_accuracy: 0.2052 Epoch 7/100 34/34 [==============================] - 5s 135ms/step - loss: 2.7798 - accuracy: 0.1574 - val_loss: 2.6602 - val_accuracy: 0.2052 Epoch 8/100 34/34 [==============================] - 5s 137ms/step - loss: 2.7025 - accuracy: 0.1677 - val_loss: 2.5903 - val_accuracy: 0.2276 Epoch 9/100 34/34 [==============================] - 4s 128ms/step - loss: 2.5619 - accuracy: 0.2121 - val_loss: 2.4044 - val_accuracy: 0.3022 Epoch 10/100 34/34 [==============================] - 4s 128ms/step - loss: 2.4898 - accuracy: 0.2219 - val_loss: 2.3211 - val_accuracy: 0.2985 Epoch 11/100 34/34 [==============================] - 4s 125ms/step - loss: 2.3639 - accuracy: 0.2401 - val_loss: 2.2142 - val_accuracy: 0.3134 Epoch 12/100 34/34 [==============================] - 5s 133ms/step - loss: 2.2993 - accuracy: 0.2676 - val_loss: 2.1901 - val_accuracy: 0.2985 Epoch 13/100 34/34 [==============================] - 5s 134ms/step - loss: 2.2449 - accuracy: 0.2905 - val_loss: 2.1168 - val_accuracy: 0.3209 Epoch 14/100 34/34 [==============================] - 5s 139ms/step - loss: 2.1605 - accuracy: 0.2999 - val_loss: 1.9910 - val_accuracy: 0.3806 Epoch 15/100 34/34 [==============================] - 4s 128ms/step - loss: 2.0797 - accuracy: 0.3139 - val_loss: 2.0061 - val_accuracy: 0.3209 Epoch 16/100 34/34 [==============================] - 4s 125ms/step - loss: 2.0196 - accuracy: 0.3466 - val_loss: 1.9265 - val_accuracy: 0.3769 Epoch 17/100 34/34 [==============================] - 4s 129ms/step - loss: 1.9776 - accuracy: 0.3391 - val_loss: 1.9193 - val_accuracy: 0.3433 Epoch 18/100 34/34 [==============================] - 4s 127ms/step - loss: 1.9069 - accuracy: 0.3620 - val_loss: 1.8587 - val_accuracy: 0.3769 Epoch 19/100 34/34 [==============================] - 4s 126ms/step - loss: 1.8439 - accuracy: 0.3779 - val_loss: 1.8293 - val_accuracy: 0.3731 Epoch 20/100 34/34 [==============================] - 4s 128ms/step - loss: 1.8149 - accuracy: 0.3895 - val_loss: 1.8029 - val_accuracy: 0.3769 Epoch 21/100 34/34 [==============================] - 4s 126ms/step - loss: 1.8082 - accuracy: 0.3858 - val_loss: 1.7861 - val_accuracy: 0.3918 Epoch 22/100 34/34 [==============================] - 4s 125ms/step - loss: 1.7665 - accuracy: 0.4012 - val_loss: 1.7489 - val_accuracy: 0.4216 Epoch 23/100 34/34 [==============================] - 4s 126ms/step - loss: 1.7138 - accuracy: 0.4213 - val_loss: 1.7137 - val_accuracy: 0.4328 Epoch 24/100 34/34 [==============================] - 4s 123ms/step - loss: 1.6326 - accuracy: 0.4367 - val_loss: 1.7099 - val_accuracy: 0.4291 Epoch 25/100 34/34 [==============================] - 4s 126ms/step - loss: 1.6359 - accuracy: 0.4381 - val_loss: 1.6848 - val_accuracy: 0.4328 Epoch 26/100 34/34 [==============================] - 4s 126ms/step - loss: 1.6062 - accuracy: 0.4675 - val_loss: 1.6807 - val_accuracy: 0.4142 Epoch 27/100 34/34 [==============================] - 4s 126ms/step - loss: 1.5800 - accuracy: 0.4587 - val_loss: 1.6395 - val_accuracy: 0.4366 Epoch 28/100 34/34 [==============================] - 4s 128ms/step - loss: 1.5578 - accuracy: 0.4596 - val_loss: 1.6069 - val_accuracy: 0.4403 Epoch 29/100 34/34 [==============================] - 4s 126ms/step - loss: 1.4795 - accuracy: 0.4909 - val_loss: 1.6020 - val_accuracy: 0.4515 Epoch 30/100 34/34 [==============================] - 4s 127ms/step - loss: 1.4857 - accuracy: 0.4946 - val_loss: 1.6100 - val_accuracy: 0.4291 Epoch 31/100 34/34 [==============================] - 4s 127ms/step - loss: 1.4686 - accuracy: 0.4876 - val_loss: 1.6144 - val_accuracy: 0.4478 Epoch 32/100 34/34 [==============================] - 4s 126ms/step - loss: 1.4465 - accuracy: 0.5044 - val_loss: 1.6063 - val_accuracy: 0.4552 Epoch 00032: early stopping Fold 5 - Test set accuracy: 39% Pipeline Completed Epoch 1/100 34/34 [==============================] - 5s 160ms/step - loss: 3.2672 - accuracy: 0.0364 - val_loss: 3.2514 - val_accuracy: 0.0373 Epoch 2/100 34/34 [==============================] - 4s 125ms/step - loss: 3.2381 - accuracy: 0.0546 - val_loss: 3.1719 - val_accuracy: 0.0560 Epoch 3/100 34/34 [==============================] - 4s 125ms/step - loss: 3.1688 - accuracy: 0.0780 - val_loss: 3.0701 - val_accuracy: 0.0933 Epoch 4/100 34/34 [==============================] - 5s 133ms/step - loss: 3.0888 - accuracy: 0.0901 - val_loss: 2.9710 - val_accuracy: 0.1082 Epoch 5/100 34/34 [==============================] - 5s 138ms/step - loss: 3.0173 - accuracy: 0.0906 - val_loss: 2.8568 - val_accuracy: 0.1194 Epoch 6/100 34/34 [==============================] - 4s 130ms/step - loss: 2.9251 - accuracy: 0.1214 - val_loss: 2.8180 - val_accuracy: 0.1269 Epoch 7/100 34/34 [==============================] - 4s 130ms/step - loss: 2.8415 - accuracy: 0.1345 - val_loss: 2.7054 - val_accuracy: 0.1716 Epoch 8/100 34/34 [==============================] - 4s 128ms/step - loss: 2.7579 - accuracy: 0.1467 - val_loss: 2.6322 - val_accuracy: 0.1978 Epoch 9/100 34/34 [==============================] - 4s 127ms/step - loss: 2.6750 - accuracy: 0.1630 - val_loss: 2.5316 - val_accuracy: 0.2575 Epoch 10/100 34/34 [==============================] - 5s 134ms/step - loss: 2.5584 - accuracy: 0.1873 - val_loss: 2.4439 - val_accuracy: 0.2425 Epoch 11/100 34/34 [==============================] - 4s 129ms/step - loss: 2.4745 - accuracy: 0.2116 - val_loss: 2.3937 - val_accuracy: 0.2948 Epoch 12/100 34/34 [==============================] - 4s 125ms/step - loss: 2.4085 - accuracy: 0.2461 - val_loss: 2.3011 - val_accuracy: 0.2948 Epoch 13/100 34/34 [==============================] - 4s 125ms/step - loss: 2.3547 - accuracy: 0.2499 - val_loss: 2.2325 - val_accuracy: 0.3097 Epoch 14/100 34/34 [==============================] - 4s 125ms/step - loss: 2.2540 - accuracy: 0.2756 - val_loss: 2.1390 - val_accuracy: 0.3246 Epoch 15/100 34/34 [==============================] - 4s 125ms/step - loss: 2.1760 - accuracy: 0.2924 - val_loss: 2.0999 - val_accuracy: 0.3470 Epoch 16/100 34/34 [==============================] - 4s 124ms/step - loss: 2.0973 - accuracy: 0.3176 - val_loss: 2.0725 - val_accuracy: 0.3545 Epoch 17/100 34/34 [==============================] - 4s 125ms/step - loss: 2.0517 - accuracy: 0.3260 - val_loss: 1.9733 - val_accuracy: 0.3619 Epoch 18/100 34/34 [==============================] - 4s 130ms/step - loss: 2.0207 - accuracy: 0.3288 - val_loss: 1.9383 - val_accuracy: 0.3657 Epoch 19/100 34/34 [==============================] - 4s 126ms/step - loss: 1.9707 - accuracy: 0.3419 - val_loss: 1.9221 - val_accuracy: 0.3731 Epoch 20/100 34/34 [==============================] - 4s 124ms/step - loss: 1.8885 - accuracy: 0.3695 - val_loss: 1.8890 - val_accuracy: 0.3694 Epoch 21/100 34/34 [==============================] - 4s 125ms/step - loss: 1.8416 - accuracy: 0.3830 - val_loss: 1.8371 - val_accuracy: 0.3993 Epoch 22/100 34/34 [==============================] - 4s 126ms/step - loss: 1.7947 - accuracy: 0.3919 - val_loss: 1.8223 - val_accuracy: 0.3993 Epoch 23/100 34/34 [==============================] - 4s 125ms/step - loss: 1.7631 - accuracy: 0.3984 - val_loss: 1.7949 - val_accuracy: 0.3955 Epoch 24/100 34/34 [==============================] - 4s 126ms/step - loss: 1.7420 - accuracy: 0.4171 - val_loss: 1.7796 - val_accuracy: 0.3806 Epoch 25/100 34/34 [==============================] - 4s 132ms/step - loss: 1.6992 - accuracy: 0.4222 - val_loss: 1.7558 - val_accuracy: 0.4216 Epoch 26/100 34/34 [==============================] - 4s 125ms/step - loss: 1.6725 - accuracy: 0.4306 - val_loss: 1.7290 - val_accuracy: 0.3843 Epoch 27/100 34/34 [==============================] - 5s 138ms/step - loss: 1.6057 - accuracy: 0.4362 - val_loss: 1.7186 - val_accuracy: 0.4104 Epoch 28/100 34/34 [==============================] - 5s 135ms/step - loss: 1.6203 - accuracy: 0.4428 - val_loss: 1.7001 - val_accuracy: 0.4216 Epoch 29/100 34/34 [==============================] - 5s 136ms/step - loss: 1.5819 - accuracy: 0.4512 - val_loss: 1.6539 - val_accuracy: 0.4366 Epoch 30/100 34/34 [==============================] - 5s 134ms/step - loss: 1.5266 - accuracy: 0.4713 - val_loss: 1.6312 - val_accuracy: 0.4179 Epoch 31/100 34/34 [==============================] - 4s 130ms/step - loss: 1.5084 - accuracy: 0.4657 - val_loss: 1.6788 - val_accuracy: 0.4104 Epoch 32/100 34/34 [==============================] - 4s 127ms/step - loss: 1.4603 - accuracy: 0.4918 - val_loss: 1.6212 - val_accuracy: 0.4515 Epoch 33/100 34/34 [==============================] - 4s 126ms/step - loss: 1.4797 - accuracy: 0.4895 - val_loss: 1.6242 - val_accuracy: 0.4216 Epoch 34/100 34/34 [==============================] - 4s 127ms/step - loss: 1.4100 - accuracy: 0.5026 - val_loss: 1.5913 - val_accuracy: 0.4664 Epoch 35/100 34/34 [==============================] - 4s 127ms/step - loss: 1.4094 - accuracy: 0.5147 - val_loss: 1.6621 - val_accuracy: 0.4403 Epoch 36/100 34/34 [==============================] - 4s 126ms/step - loss: 1.3758 - accuracy: 0.5194 - val_loss: 1.6314 - val_accuracy: 0.4403 Epoch 37/100 34/34 [==============================] - 4s 126ms/step - loss: 1.3784 - accuracy: 0.5142 - val_loss: 1.6309 - val_accuracy: 0.4403 Epoch 00037: early stopping Fold 6 - Test set accuracy: 43% Pipeline Completed Epoch 1/100 34/34 [==============================] - 5s 159ms/step - loss: 3.2650 - accuracy: 0.0373 - val_loss: 3.2462 - val_accuracy: 0.0524 Epoch 2/100 34/34 [==============================] - 4s 126ms/step - loss: 3.2206 - accuracy: 0.0625 - val_loss: 3.1509 - val_accuracy: 0.1049 Epoch 3/100 34/34 [==============================] - 4s 126ms/step - loss: 3.1378 - accuracy: 0.0681 - val_loss: 3.0487 - val_accuracy: 0.0974 Epoch 4/100 34/34 [==============================] - 4s 126ms/step - loss: 3.0414 - accuracy: 0.0807 - val_loss: 2.9849 - val_accuracy: 0.1124 Epoch 5/100 34/34 [==============================] - 4s 125ms/step - loss: 2.9551 - accuracy: 0.1003 - val_loss: 2.8266 - val_accuracy: 0.1386 Epoch 6/100 34/34 [==============================] - 4s 126ms/step - loss: 2.8777 - accuracy: 0.1209 - val_loss: 2.7420 - val_accuracy: 0.1311 Epoch 7/100 34/34 [==============================] - 4s 127ms/step - loss: 2.7832 - accuracy: 0.1437 - val_loss: 2.6606 - val_accuracy: 0.1798 Epoch 8/100 34/34 [==============================] - 4s 126ms/step - loss: 2.7108 - accuracy: 0.1540 - val_loss: 2.5505 - val_accuracy: 0.2434 Epoch 9/100 34/34 [==============================] - 4s 120ms/step - loss: 2.6186 - accuracy: 0.1839 - val_loss: 2.4615 - val_accuracy: 0.2772 Epoch 10/100 34/34 [==============================] - 4s 127ms/step - loss: 2.5082 - accuracy: 0.2151 - val_loss: 2.3165 - val_accuracy: 0.2996 Epoch 11/100 34/34 [==============================] - 4s 126ms/step - loss: 2.4749 - accuracy: 0.2198 - val_loss: 2.3135 - val_accuracy: 0.2584 Epoch 12/100 34/34 [==============================] - 4s 125ms/step - loss: 2.4096 - accuracy: 0.2389 - val_loss: 2.2483 - val_accuracy: 0.2884 Epoch 13/100 34/34 [==============================] - 4s 125ms/step - loss: 2.2550 - accuracy: 0.2678 - val_loss: 2.1701 - val_accuracy: 0.3034 Epoch 14/100 34/34 [==============================] - 4s 127ms/step - loss: 2.1982 - accuracy: 0.2996 - val_loss: 2.0726 - val_accuracy: 0.3034 Epoch 15/100 34/34 [==============================] - 4s 126ms/step - loss: 2.1457 - accuracy: 0.3150 - val_loss: 2.0555 - val_accuracy: 0.3408 Epoch 16/100 34/34 [==============================] - 5s 143ms/step - loss: 2.0736 - accuracy: 0.3271 - val_loss: 1.9778 - val_accuracy: 0.3670 Epoch 17/100 34/34 [==============================] - 4s 126ms/step - loss: 2.0063 - accuracy: 0.3364 - val_loss: 1.9419 - val_accuracy: 0.3670 Epoch 18/100 34/34 [==============================] - 4s 126ms/step - loss: 1.9806 - accuracy: 0.3439 - val_loss: 1.8687 - val_accuracy: 0.4157 Epoch 19/100 34/34 [==============================] - 4s 126ms/step - loss: 1.9385 - accuracy: 0.3668 - val_loss: 1.8607 - val_accuracy: 0.3858 Epoch 20/100 34/34 [==============================] - 4s 124ms/step - loss: 1.8757 - accuracy: 0.3682 - val_loss: 1.8278 - val_accuracy: 0.3895 Epoch 21/100 34/34 [==============================] - 4s 122ms/step - loss: 1.8320 - accuracy: 0.3724 - val_loss: 1.8058 - val_accuracy: 0.3933 Epoch 22/100 34/34 [==============================] - 4s 127ms/step - loss: 1.7679 - accuracy: 0.3934 - val_loss: 1.7815 - val_accuracy: 0.3820 Epoch 23/100 34/34 [==============================] - 5s 133ms/step - loss: 1.7622 - accuracy: 0.4036 - val_loss: 1.7678 - val_accuracy: 0.4082 Epoch 24/100 34/34 [==============================] - 4s 130ms/step - loss: 1.7117 - accuracy: 0.4139 - val_loss: 1.7756 - val_accuracy: 0.3783 Epoch 25/100 34/34 [==============================] - 4s 127ms/step - loss: 1.6940 - accuracy: 0.4256 - val_loss: 1.7379 - val_accuracy: 0.4007 Epoch 26/100 34/34 [==============================] - 5s 133ms/step - loss: 1.6417 - accuracy: 0.4414 - val_loss: 1.7140 - val_accuracy: 0.4270 Epoch 27/100 34/34 [==============================] - 4s 130ms/step - loss: 1.6079 - accuracy: 0.4648 - val_loss: 1.6731 - val_accuracy: 0.4120 Epoch 28/100 34/34 [==============================] - 5s 134ms/step - loss: 1.5619 - accuracy: 0.4578 - val_loss: 1.6427 - val_accuracy: 0.4232 Epoch 29/100 34/34 [==============================] - 4s 127ms/step - loss: 1.5551 - accuracy: 0.4536 - val_loss: 1.6682 - val_accuracy: 0.4195 Epoch 30/100 34/34 [==============================] - 4s 125ms/step - loss: 1.5046 - accuracy: 0.4568 - val_loss: 1.6446 - val_accuracy: 0.4232 Epoch 31/100 34/34 [==============================] - 4s 125ms/step - loss: 1.4852 - accuracy: 0.4783 - val_loss: 1.6480 - val_accuracy: 0.4082 Epoch 00031: early stopping Fold 7 - Test set accuracy: 44% Pipeline Completed Epoch 1/100 34/34 [==============================] - 5s 144ms/step - loss: 3.2609 - accuracy: 0.0420 - val_loss: 3.2266 - val_accuracy: 0.0448 Epoch 2/100 34/34 [==============================] - 4s 114ms/step - loss: 3.2037 - accuracy: 0.0617 - val_loss: 3.1099 - val_accuracy: 0.0821 Epoch 3/100 34/34 [==============================] - 4s 126ms/step - loss: 3.1275 - accuracy: 0.0827 - val_loss: 2.9962 - val_accuracy: 0.1045 Epoch 4/100 34/34 [==============================] - 4s 127ms/step - loss: 3.0397 - accuracy: 0.0972 - val_loss: 2.9439 - val_accuracy: 0.0970 Epoch 5/100 34/34 [==============================] - 4s 123ms/step - loss: 2.9565 - accuracy: 0.1004 - val_loss: 2.8261 - val_accuracy: 0.1306 Epoch 6/100 34/34 [==============================] - 4s 127ms/step - loss: 2.8423 - accuracy: 0.1275 - val_loss: 2.7197 - val_accuracy: 0.1604 Epoch 7/100 34/34 [==============================] - 5s 134ms/step - loss: 2.7726 - accuracy: 0.1509 - val_loss: 2.6977 - val_accuracy: 0.1754 Epoch 8/100 34/34 [==============================] - 5s 134ms/step - loss: 2.6537 - accuracy: 0.1756 - val_loss: 2.5404 - val_accuracy: 0.2015 Epoch 9/100 34/34 [==============================] - 5s 133ms/step - loss: 2.5679 - accuracy: 0.2064 - val_loss: 2.4720 - val_accuracy: 0.2090 Epoch 10/100 34/34 [==============================] - 4s 122ms/step - loss: 2.5162 - accuracy: 0.2172 - val_loss: 2.4371 - val_accuracy: 0.2537 Epoch 11/100 34/34 [==============================] - 4s 123ms/step - loss: 2.3877 - accuracy: 0.2504 - val_loss: 2.2668 - val_accuracy: 0.2985 Epoch 12/100 34/34 [==============================] - 4s 129ms/step - loss: 2.3053 - accuracy: 0.2644 - val_loss: 2.2533 - val_accuracy: 0.3060 Epoch 13/100 34/34 [==============================] - 4s 124ms/step - loss: 2.2416 - accuracy: 0.2606 - val_loss: 2.1617 - val_accuracy: 0.3172 Epoch 14/100 34/34 [==============================] - 4s 124ms/step - loss: 2.1751 - accuracy: 0.2896 - val_loss: 2.1574 - val_accuracy: 0.2910 Epoch 15/100 34/34 [==============================] - 4s 123ms/step - loss: 2.1076 - accuracy: 0.3101 - val_loss: 2.0862 - val_accuracy: 0.3321 Epoch 16/100 34/34 [==============================] - 4s 123ms/step - loss: 2.0234 - accuracy: 0.3382 - val_loss: 2.0035 - val_accuracy: 0.3321 Epoch 17/100 34/34 [==============================] - 4s 128ms/step - loss: 2.0058 - accuracy: 0.3461 - val_loss: 1.9560 - val_accuracy: 0.3731 Epoch 18/100 34/34 [==============================] - 4s 127ms/step - loss: 1.9474 - accuracy: 0.3718 - val_loss: 1.9169 - val_accuracy: 0.3843 Epoch 19/100 34/34 [==============================] - 4s 113ms/step - loss: 1.8822 - accuracy: 0.3718 - val_loss: 1.8764 - val_accuracy: 0.3806 Epoch 20/100 34/34 [==============================] - 4s 126ms/step - loss: 1.8369 - accuracy: 0.3797 - val_loss: 1.8610 - val_accuracy: 0.3843 Epoch 21/100 34/34 [==============================] - 4s 129ms/step - loss: 1.7644 - accuracy: 0.4120 - val_loss: 1.7916 - val_accuracy: 0.3955 Epoch 22/100 34/34 [==============================] - 4s 124ms/step - loss: 1.7163 - accuracy: 0.4246 - val_loss: 1.8062 - val_accuracy: 0.4067 Epoch 23/100 34/34 [==============================] - 4s 128ms/step - loss: 1.7014 - accuracy: 0.4264 - val_loss: 1.7566 - val_accuracy: 0.4142 Epoch 24/100 34/34 [==============================] - 4s 123ms/step - loss: 1.6756 - accuracy: 0.4404 - val_loss: 1.7116 - val_accuracy: 0.4328 Epoch 25/100 34/34 [==============================] - 4s 128ms/step - loss: 1.6288 - accuracy: 0.4376 - val_loss: 1.7471 - val_accuracy: 0.4067 Epoch 26/100 34/34 [==============================] - 5s 136ms/step - loss: 1.5721 - accuracy: 0.4563 - val_loss: 1.6785 - val_accuracy: 0.4366 Epoch 27/100 34/34 [==============================] - 4s 130ms/step - loss: 1.5051 - accuracy: 0.4787 - val_loss: 1.6946 - val_accuracy: 0.4478 Epoch 28/100 34/34 [==============================] - 4s 128ms/step - loss: 1.5261 - accuracy: 0.4689 - val_loss: 1.6948 - val_accuracy: 0.4478 Epoch 29/100 34/34 [==============================] - 4s 127ms/step - loss: 1.5353 - accuracy: 0.4717 - val_loss: 1.6964 - val_accuracy: 0.4552 Epoch 00029: early stopping Fold 8 - Test set accuracy: 45% Pipeline Completed Epoch 1/100 34/34 [==============================] - 5s 150ms/step - loss: 3.2689 - accuracy: 0.0369 - val_loss: 3.2577 - val_accuracy: 0.0336 Epoch 2/100 34/34 [==============================] - 4s 115ms/step - loss: 3.2461 - accuracy: 0.0500 - val_loss: 3.2259 - val_accuracy: 0.0522 Epoch 3/100 34/34 [==============================] - 4s 114ms/step - loss: 3.2008 - accuracy: 0.0635 - val_loss: 3.1230 - val_accuracy: 0.0896 Epoch 4/100 34/34 [==============================] - 4s 116ms/step - loss: 3.1061 - accuracy: 0.0892 - val_loss: 2.9919 - val_accuracy: 0.1157 Epoch 5/100 34/34 [==============================] - 4s 124ms/step - loss: 3.0177 - accuracy: 0.0897 - val_loss: 2.8838 - val_accuracy: 0.1306 Epoch 6/100 34/34 [==============================] - 4s 124ms/step - loss: 2.9043 - accuracy: 0.1168 - val_loss: 2.8322 - val_accuracy: 0.1343 Epoch 7/100 34/34 [==============================] - 4s 127ms/step - loss: 2.8170 - accuracy: 0.1369 - val_loss: 2.7128 - val_accuracy: 0.1940 Epoch 8/100 34/34 [==============================] - 4s 118ms/step - loss: 2.6915 - accuracy: 0.1831 - val_loss: 2.6737 - val_accuracy: 0.1828 Epoch 9/100 34/34 [==============================] - 4s 114ms/step - loss: 2.6176 - accuracy: 0.1878 - val_loss: 2.5085 - val_accuracy: 0.2649 Epoch 10/100 34/34 [==============================] - 4s 116ms/step - loss: 2.4814 - accuracy: 0.2335 - val_loss: 2.3691 - val_accuracy: 0.2836 Epoch 11/100 34/34 [==============================] - 4s 128ms/step - loss: 2.3763 - accuracy: 0.2518 - val_loss: 2.3323 - val_accuracy: 0.2612 Epoch 12/100 34/34 [==============================] - 4s 126ms/step - loss: 2.2681 - accuracy: 0.2672 - val_loss: 2.1891 - val_accuracy: 0.3060 Epoch 13/100 34/34 [==============================] - 4s 125ms/step - loss: 2.1904 - accuracy: 0.2905 - val_loss: 2.1469 - val_accuracy: 0.3209 Epoch 14/100 34/34 [==============================] - 4s 122ms/step - loss: 2.1282 - accuracy: 0.3106 - val_loss: 2.1206 - val_accuracy: 0.3134 Epoch 15/100 34/34 [==============================] - 4s 129ms/step - loss: 2.0566 - accuracy: 0.3386 - val_loss: 2.0676 - val_accuracy: 0.3582 Epoch 16/100 34/34 [==============================] - 4s 126ms/step - loss: 1.9980 - accuracy: 0.3568 - val_loss: 1.9513 - val_accuracy: 0.3582 Epoch 17/100 34/34 [==============================] - 4s 125ms/step - loss: 1.8888 - accuracy: 0.3545 - val_loss: 1.9057 - val_accuracy: 0.3694 Epoch 18/100 34/34 [==============================] - 4s 125ms/step - loss: 1.8827 - accuracy: 0.3769 - val_loss: 1.9156 - val_accuracy: 0.3769 Epoch 19/100 34/34 [==============================] - 4s 125ms/step - loss: 1.7949 - accuracy: 0.3928 - val_loss: 1.8852 - val_accuracy: 0.3657 Epoch 20/100 34/34 [==============================] - 4s 126ms/step - loss: 1.7781 - accuracy: 0.4092 - val_loss: 1.8273 - val_accuracy: 0.3694 Epoch 21/100 34/34 [==============================] - 4s 130ms/step - loss: 1.7144 - accuracy: 0.4232 - val_loss: 1.8104 - val_accuracy: 0.3918 Epoch 22/100 34/34 [==============================] - 4s 126ms/step - loss: 1.6692 - accuracy: 0.4325 - val_loss: 1.8384 - val_accuracy: 0.3806 Epoch 23/100 34/34 [==============================] - 4s 125ms/step - loss: 1.6120 - accuracy: 0.4568 - val_loss: 1.7642 - val_accuracy: 0.4104 Epoch 24/100 34/34 [==============================] - 4s 125ms/step - loss: 1.6421 - accuracy: 0.4493 - val_loss: 1.7497 - val_accuracy: 0.4067 Epoch 25/100 34/34 [==============================] - 4s 126ms/step - loss: 1.5820 - accuracy: 0.4479 - val_loss: 1.7183 - val_accuracy: 0.4142 Epoch 26/100 34/34 [==============================] - 4s 128ms/step - loss: 1.5484 - accuracy: 0.4745 - val_loss: 1.7261 - val_accuracy: 0.4403 Epoch 27/100 34/34 [==============================] - 4s 128ms/step - loss: 1.5087 - accuracy: 0.4830 - val_loss: 1.7083 - val_accuracy: 0.4440 Epoch 28/100 34/34 [==============================] - 4s 126ms/step - loss: 1.4911 - accuracy: 0.4773 - val_loss: 1.6851 - val_accuracy: 0.4216 Epoch 29/100 34/34 [==============================] - 4s 125ms/step - loss: 1.4949 - accuracy: 0.4937 - val_loss: 1.6921 - val_accuracy: 0.4552 Epoch 30/100 34/34 [==============================] - 4s 126ms/step - loss: 1.4303 - accuracy: 0.4932 - val_loss: 1.7076 - val_accuracy: 0.4328 Epoch 31/100 34/34 [==============================] - 4s 126ms/step - loss: 1.4288 - accuracy: 0.5068 - val_loss: 1.6712 - val_accuracy: 0.4291 Epoch 32/100 34/34 [==============================] - 4s 131ms/step - loss: 1.3799 - accuracy: 0.5245 - val_loss: 1.6375 - val_accuracy: 0.4403 Epoch 33/100 34/34 [==============================] - 4s 129ms/step - loss: 1.3717 - accuracy: 0.5334 - val_loss: 1.6472 - val_accuracy: 0.4590 Epoch 34/100 34/34 [==============================] - 4s 128ms/step - loss: 1.3667 - accuracy: 0.5423 - val_loss: 1.6273 - val_accuracy: 0.4627 Epoch 35/100 34/34 [==============================] - 4s 125ms/step - loss: 1.3414 - accuracy: 0.5488 - val_loss: 1.6324 - val_accuracy: 0.4590 Epoch 36/100 34/34 [==============================] - 4s 125ms/step - loss: 1.3298 - accuracy: 0.5367 - val_loss: 1.6070 - val_accuracy: 0.4403 Epoch 37/100 34/34 [==============================] - 4s 131ms/step - loss: 1.3138 - accuracy: 0.5455 - val_loss: 1.6675 - val_accuracy: 0.4291 Epoch 38/100 34/34 [==============================] - 4s 131ms/step - loss: 1.2989 - accuracy: 0.5390 - val_loss: 1.6554 - val_accuracy: 0.4142 Epoch 39/100 34/34 [==============================] - 4s 132ms/step - loss: 1.2358 - accuracy: 0.5838 - val_loss: 1.6414 - val_accuracy: 0.4291 Epoch 00039: early stopping Fold 9 - Test set accuracy: 47% Pipeline Completed Epoch 1/100 34/34 [==============================] - 5s 158ms/step - loss: 3.2665 - accuracy: 0.0383 - val_loss: 3.2489 - val_accuracy: 0.0562 Epoch 2/100 34/34 [==============================] - 4s 129ms/step - loss: 3.2255 - accuracy: 0.0588 - val_loss: 3.1547 - val_accuracy: 0.0599 Epoch 3/100 34/34 [==============================] - 4s 126ms/step - loss: 3.1353 - accuracy: 0.0779 - val_loss: 3.0591 - val_accuracy: 0.0936 Epoch 4/100 34/34 [==============================] - 4s 120ms/step - loss: 3.0529 - accuracy: 0.0915 - val_loss: 2.9219 - val_accuracy: 0.1273 Epoch 5/100 34/34 [==============================] - 4s 126ms/step - loss: 2.9584 - accuracy: 0.1050 - val_loss: 2.8460 - val_accuracy: 0.1723 Epoch 6/100 34/34 [==============================] - 4s 131ms/step - loss: 2.8669 - accuracy: 0.1428 - val_loss: 2.7162 - val_accuracy: 0.1685 Epoch 7/100 34/34 [==============================] - 4s 129ms/step - loss: 2.7653 - accuracy: 0.1442 - val_loss: 2.6266 - val_accuracy: 0.2135 Epoch 8/100 34/34 [==============================] - 4s 129ms/step - loss: 2.6929 - accuracy: 0.1801 - val_loss: 2.5384 - val_accuracy: 0.2210 Epoch 9/100 34/34 [==============================] - 4s 125ms/step - loss: 2.5571 - accuracy: 0.2086 - val_loss: 2.4323 - val_accuracy: 0.2210 Epoch 10/100 34/34 [==============================] - 4s 125ms/step - loss: 2.4872 - accuracy: 0.2165 - val_loss: 2.3451 - val_accuracy: 0.2434 Epoch 11/100 34/34 [==============================] - 4s 124ms/step - loss: 2.3540 - accuracy: 0.2543 - val_loss: 2.2940 - val_accuracy: 0.2734 Epoch 12/100 34/34 [==============================] - 4s 125ms/step - loss: 2.2692 - accuracy: 0.2664 - val_loss: 2.2227 - val_accuracy: 0.2846 Epoch 13/100 34/34 [==============================] - 4s 127ms/step - loss: 2.2037 - accuracy: 0.2907 - val_loss: 2.1397 - val_accuracy: 0.2959 Epoch 14/100 34/34 [==============================] - 4s 131ms/step - loss: 2.1645 - accuracy: 0.3024 - val_loss: 2.1318 - val_accuracy: 0.3184 Epoch 15/100 34/34 [==============================] - 4s 127ms/step - loss: 2.1325 - accuracy: 0.3196 - val_loss: 2.0789 - val_accuracy: 0.3221 Epoch 16/100 34/34 [==============================] - 4s 124ms/step - loss: 2.0220 - accuracy: 0.3383 - val_loss: 2.0245 - val_accuracy: 0.3296 Epoch 17/100 34/34 [==============================] - 4s 125ms/step - loss: 2.0008 - accuracy: 0.3500 - val_loss: 1.9790 - val_accuracy: 0.3483 Epoch 18/100 34/34 [==============================] - 4s 125ms/step - loss: 1.9045 - accuracy: 0.3752 - val_loss: 1.9681 - val_accuracy: 0.3670 Epoch 19/100 34/34 [==============================] - 4s 125ms/step - loss: 1.8799 - accuracy: 0.3840 - val_loss: 1.8951 - val_accuracy: 0.3633 Epoch 20/100 34/34 [==============================] - 4s 131ms/step - loss: 1.8264 - accuracy: 0.3896 - val_loss: 1.8586 - val_accuracy: 0.3820 Epoch 21/100 34/34 [==============================] - 4s 126ms/step - loss: 1.7842 - accuracy: 0.3980 - val_loss: 1.8148 - val_accuracy: 0.3670 Epoch 22/100 34/34 [==============================] - 4s 126ms/step - loss: 1.7525 - accuracy: 0.4036 - val_loss: 1.8494 - val_accuracy: 0.3596 Epoch 23/100 34/34 [==============================] - 4s 132ms/step - loss: 1.7135 - accuracy: 0.4288 - val_loss: 1.7969 - val_accuracy: 0.3970 Epoch 24/100 34/34 [==============================] - 4s 131ms/step - loss: 1.6972 - accuracy: 0.4279 - val_loss: 1.7607 - val_accuracy: 0.3933 Epoch 25/100 34/34 [==============================] - 5s 134ms/step - loss: 1.6148 - accuracy: 0.4545 - val_loss: 1.6973 - val_accuracy: 0.4382 Epoch 26/100 34/34 [==============================] - 4s 129ms/step - loss: 1.6226 - accuracy: 0.4680 - val_loss: 1.7577 - val_accuracy: 0.3895 Epoch 27/100 34/34 [==============================] - 4s 127ms/step - loss: 1.5894 - accuracy: 0.4671 - val_loss: 1.7238 - val_accuracy: 0.4419 Epoch 28/100 34/34 [==============================] - 4s 128ms/step - loss: 1.5590 - accuracy: 0.4685 - val_loss: 1.7438 - val_accuracy: 0.4232 Epoch 00028: early stopping Fold 10 - Test set accuracy: 41% [0.48, 0.43, 0.4, 0.43, 0.39, 0.43, 0.44, 0.45, 0.47, 0.41] mean score: 0.43
print("Done")
print(acc_per_fold)
print('mean score:', round(np.mean(acc_per_fold), 2))
Done [0.48, 0.43, 0.4, 0.43, 0.39, 0.43, 0.44, 0.45, 0.47, 0.41] mean score: 0.43